A basal area model responsive to thinning for a
plantation forest
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Abstract The Tarawera Valley spacing and thinning trial data were used to develop a dynamical model for
basal area prediction that is responsive to both spacing and thinning. The model is a ‘critically damped’
second-order model, i.e. it simulates a sigmotidal response, before and after thinring. It has a scalar spacing
variable which makes the model responsive to different spacing trials. Tt also has a vector reductor’ term
which enables simulation over different productivity sites, although this still needs to be validated with
measured data. The dynamical model has the potential of being apphed across a forest estate with different

productivity sites, if data are available for all sites.

1. Introduction

Dynamical models are extensively used in
Systems Engineering for System Identification
(t.e. model development for dynamic systems)
and Optimal Controf {that concerns iself with
the means by which to alter the futere behaviour

-0f adynantc system. to.achieve. an oucome at. a..

minimal cost). They are black box models and
System Identification enables the development of
mathematical tunctions that describe the
behaviour-of @ dynamic systemy rather-than the
process. The dynamical model has three basic
paramieters, i.e. input (& parameter that can be
measured and directly controlled by the
observer); output (an observable parameter that
can be measured and indirectly controlled by the
observer); and noise {the influence exerted by the
exiernal environment on the dynamic system,
that includes noise that can be directly measured
and that which can only be observed through its
influence on the inpot), The most basic discrete-
time dynamical model, a first-order function, has
the following form:

vt = ay(t-1) + biI-aju(t), t={te N/
a={aeRi0<a<i}b={beRIb>0]
(D

where

{ = time;

y(t) = output y at time f;

u = input vector;
a = shape parameter;

...which has a generic form represented as follows:.....
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b = asymptotic limit of function;,
N={1 23 ...} and
R = set of real numbers.

Using the Tarawera Vailey data, a ‘critically
damped’ second-crder modet (DiStefanc et al.
1995) was identified for basal area prediction

Hih=ay(t-1) + ay(i-2) + b(i-a -aju(t)  (2)
For a  detailed " understanding of “dynamical
models, a textbook by Professor Ljung (1987) is
highly recommended.

2. Data

The data, from a replicated spacing and thinning
trial in the Tarawera Valley, New Zealand, were
used to develop the basal area prediction model.
The trial was established in 1963 with the sole
purpose of investigating the economic impact of
a number of alternative regimes for sawlog and
pulpwood production of Pinus radita 0. Don
{(James 1976). Measurements were carried out
each winter from 1969 to 1989 and 1991. There
were 90 plots, hexagonal in shape, laid out in a
honeycomb pattern in four adjacent stands, and
each established at a different planting
espacement. The four planting espacements were
13x83m 18x1.8m 2.1 x 2.1 mand 27 x
R



Each of the 90 plots had an area of 0.06 ha where
trees were measured, with a surrounding buffer
between plots of ¢./2 ha. For each espacement,
control plots were established which provided
information on what would happen if the stands
remained unihinned. The thinning strategies
were as Follows:
I pre-commercial thinning from initiai density
w /330 stems ha | 2“‘j}hinning (selective)
from /330-375 stems ha

2. pre-commercial thinning from inittal density
to £330 sems ha , Z’f(: thinning (crown)
from [330-50¢ sterns ha ; and

3. mechanical  {row) thipning from inttial

density to 375 stems ha .
3. Method

The method followed here was similar to the one
used by Chikumbo et al. (1999) for developing a
dynamical model for stand basal area prediction
for both unthinned and thinned stands, using data
from unthinned stands and stands thinned early
and in advance of competition mortality”. To
achieve this, the basal area data were grouped for
each espacement as tollows: thinned plots calied
ET (i.e. plots thinned early and in advance of
competition before measuring); unthinned plots
called UT (i.e. control plots measured every
winter); and thinned plots called TT (i.e. thinned
plots--measuged--before - and--between - thinning
aperations).

The ETs were used for System Identification and
some of the TTs used for cross validation of the
models (Chikumbo et al. 1999} The UTs were
not used for System Identification as in
Chikumbo et al. (1999) because the initial
densities ,were high, ranging from /384-5/57
stems ha . Competition mortality was very lugh
causing erratic basal area trends, although they
could still be identified by a simple first-order
dynamical model. This model is not discussed in
this paper, because the emphasis was on a mode}
responsive 10 thinning. The stand basal area
trends between thinning operations, with residual
densities ranging from 379-1334 stems ha

showed sigmoidal trends that were ideatified
with a ‘critically damped” second-order model.
The model was complicated by designing it to
respond not only to thinning but to spacing and

" This treatment of thinping early and in advance of

© competition mortality provides a miedns of eéstablishing

nominal plots with varying initial stand densities
(Chikumbo et al, 199,
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different productivity sites. Since the Taraweru
data were from one site, the model’s ability to
simuiate different sites still require data for
further wvalidation, although its  theoretical
response was demonstrated,

The basal area prediction had the following
form:

¥t = ay(t-l]+ay(e-2) + afufs),

)= At
where y

y = stand basal area, m ha

o= spacing variabie,

ﬁ:—-:’;(]—a]-ct2):

A = parameter that is a function of residual
density following thinning;

u(ti reductor  term  (adapts
different sites); and

= initial time at start of mode! simulation,
A second-order model i inifialised by two
values, 3'(!0) and y(r ). ¥t 15 a tunction of the
previous value, Ay(r ) and 4 will influence the
response of the model, depending on the residual
density.

-1

model to

4. Results and discussion

Using a single ET plot from the 1.3 x 13 m
espacement a second-order model (as in equation
(3)) was identified using a Systemn Idertitication
toolbox running under MATLAB (MathWorks
Inc. 1992} Constrained optimisation was then
used to fit the rest of the ET data to this mode!
structure. Since the a, a, and b are not in any
way unique, it is important to use constraingd
optimisation such that changes in  these
parameters can be tracked with response to
changes ia the residual densities (¢) from the ET
plots. The foliowing set of residual densities
were available for all the espacements, (d e N1 d
= (379, 395, 741, 1334}}. The changes in the
parameters were only accepted on the basis of
satistying a low mean squared error (MSE), high
R-squared  value,  homoscedasticity,  the
autocorrelation function of residuals and the
cross correlation between the residuals and the
input(s}.

Because the dynamical models are identified by

regressing  Ingged variables, the statistical
properties are investigated by looking  at
correlations  in  residuals:  the correlations

between “the residuals,” 5 steps apart, should -
always be the same (Chatfield 1984) and this



was satistied in all the models developed. The
residuals of the dynamical model are shown as a
correfogram as in Figure |. A correlogram is an
aid for interpreting a set of autocorrelation
coefficients  (defined as the ratio of the
autocovariance at fag & to the autocovariance at
lag zero —i.e. a scaled autocovariance). The rule

is that if the correlation coefficients, which
approximate a normal distribution of mean zero
and variance [/, go significantly outside the

1"2/'\/; confidence band (where » is the size of
the time series), the corresponding model should
not be accepted (Chikumbo et al. 1998),
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Figure 1. (a) the autocorrelation function of residuals; and (b) the cross correlation between the residuals
and the b parameter, for-one of the ET plots modelled-with equation (3).

The parameters a, (/.1764y and a, (-0.2336)
remained static for afl thinning responses, and 3
varied monotorically with increasing residual
densities, ie J= {4, 4, 5.13 and 5.4}, for residupl
densities, {379, 395 74/ and /334 stems ha }
respecuvely. & switched between 2 values, /.09
tfor 379741 stems ha ) and /.18 (for 1334
stems ha ). With greater variation in the residual
densities, a Hnear function for 4, dependent on
the residuai densities, can be developed and the
same done for 4. The spacing variable, o, varied
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as follows; {/, /.15, /.2 and 7. /2} for {13 x 1.3
m, 1.8 x 1.8 m 2.1 x 2.0 m, and 2.7 x 2.7 m)}
respectively.

This model was validated with the TTs and
Table 1 shows the summary statistics of the
validation for the some of the plots. Since there
were no TT plots for the 2.7 x 2.7 m espacement,
some of the ET plots were used for the
validation.



Table 1. Statistical validation of model (3}. The plots are given as follows: plot group/plot number/spacing.

PLOT AGE RANGE | RESIDUAL MSE R-sguared Residuals

{(years) DENSITY

(trees ha }

TE /1 3x1 3m | 9-28 379 (0.8 0.99 increasing trend
T8/ 3x1.3m 9-28 379 0.3 (199 horizontal band
TTAY 3% 3m 11-28 379 03 (1.99 horizontal band
TT/2/1.8x 1 .8m 11-28 379 0.35 0.99 horizontal band
TT/A/ 18 8m | 6-4 1334 0.04 (1.99 N/A
TT/H8/1 . 8x18m 1128 379 .06 (199 horizontal band
TTAO21x2.1m 11-28 379 0.8 .99 horizontal band
TT/04/2.1x2.1m 11-28 379 215 .99 horizontal band
TTHI2.1x2.tm | 69 1334 0.9 0.99 N/A
ET/O7/2.7x2.7m 13-28 379 .02 .99 horizontal band
BTS2 7x2.7m 6-28 741 1! .99 horizontal band
Since data were not available for other shown it Figure 2, in order to iHustrate the effect

productivity sites, only predictive simulations are

of the reductor term.

30

Figare 2. Trends from tictitious productivity sites {4, B, € and D) generated using equation (3) fora 1.3 x

1.3 m spacing with the vector & is as follows: u =[],/
reNlr=f1,23.., 28}

ard u”=[U.~'{i. 04,...,04], Y

5. Conclusion

A dynamical model can be developed for
plantation  forestry  with  a  flexibility that
accurately reflects initial spacing and thinning.
The model also carries a potential of being
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.....

1] HBE[O.S, 0.8, 0.8]; it(_;[()_(), 0.0,..., .0l

extended to other productivity sites atthough this
still has to be validated with measured data.
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